Knowledge-based Neural Network for Line Flow Contingency Selection and Ranking
نویسندگان
چکیده
The Line flow Contingency Selection and Ranking (CS & R) is performed to rank the critical contingencies. An Artificial Neural Network based method for MW security assessment corresponding to line outage events have been reported by various authors in the literature. One way to provide an understanding of the behaviour of Neural Networks is to extract rules that can be provided to the user. The domain knowledge (fuzzy rules extracted from Multi-layer Perceptron model trained by Back Propagation algorithm) is integrated with a Neural Network for fast and accurate CS & R in an IEEE 14-bus system, for unknown load patterns and are found to be suitable for on-line applications at Energy Management Centers. The system user is provided with the capability to determine the set of conditions under which a line-outage is critical, and if critical, then how severe it is, thereby providing some degree of transparency of the ANN solution.
منابع مشابه
Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملHybrid fuzzy-neural network-based composite contingency ranking employing fuzzy curves for feature selection
Maintaining power system security in the deregulated and unbundled electricity market is a challenging task for power system engineers. The idea is to short-list critical contingencies from a large list of contingencies and to rank the contingencies expected to drive the system towards instability. Timely corrective measures can then be planned to save the system from collapse and blackout. Thi...
متن کاملCascade fuzzy neural network based voltage contingency screening and ranking
A method based on cascade fuzzy neural network (CFNN) comprising of a filter module and ranking module is proposed for online voltage contingency screening and ranking under known but uncertain loads. A new fuzzy performance index, which combines voltage violations and voltage stability margin following a contingency, is proposed for effective voltage security ranking. All the selected continge...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملOnline Power System Contingency Screening and Ranking Methods Using Radial Basis Neural Networks
This paper presents a supervising learning approach using Multilayer Feed Forward Neural Network(MFFN) and Radial Basis Fuction Neural Network(RBFN) to deal with fast and accurate static security assessment (SSA) and contingency analysis of a large electric power systems. The degree of severity of contingencies is measured by two scalar performance indices (PIs): Voltage-reactive power performa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005